LQNK201737), and the Scientific Research Fund of Liaoning Education
Department (No. ZF2019037).
Conflict of interest
The authors declare that they have no conflict of interest.
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.
Supplementary information accompanies this paper at https://doi.org/
10.1038/s12276-020-00534-2.
Received: 14 July 2020 Revised: 21 October 2020 Accepted: 22 October
2020.
Published online: 1 December 2020
References
1. Wang, Y. C., McPherson, K., Marsh, T., Gortmaker, S. L. & Brown, M. Health and
economic burden of the projected obesity trends in the USA and the UK.
Lancet 378, 815–825 (2011).
2. Bluher, M. Are there still healthy obese patients? Curr. Opin. Endocrinol. Diabetes Obes. 19, 341–346 (2012).
3. Afshin, A., Reitsma, M. B. & Murray, C. J. L. Health effects of overweight and
obesity in 195 countries. N. Engl. J. Med. 377, 1496–1497 (2017).
4. Rankin, W. & Wittert, G. Anti-obesity drugs. Curr. Opin. Lipidol. 26, 536–543
(2015).
5. Ridaura, V. K. et al. Gut microbiota from twins discordant for obesity modulate
metabolism in mice. Science 341, 1241214 (2013).
6. Bouter, K. E., van Raalte, D. H., Groen, A. K. & Nieuwdorp, M. Role of the gut
microbiome in the pathogenesis of obesity and obesity-related metabolic
dysfunction. Gastroenterology 152, 1671–1678 (2017).
7. Ley, R. E. et al. Obesity alters gut microbial ecology. Proc. Natl Acad. Sci. USA
102, 11070–11075 (2005).
8. Cani, P. D. et al. Changes in gut microbiota control metabolic endotoxemiainduced inflammation in high-fat diet-induced obesity and diabetes in mice.
Diabetes 57, 1470–1481 (2008).
9. Lu, Y. et al. Short chain fatty acids prevent high-fat-diet-induced obesity in
mice by regulating G protein-coupled receptors and gut microbiota. Sci. Rep.
6, 37589 (2016).
10. Canfora, E. E., Jocken, J. W. & Blaak, E. E. Short-chain fatty acids in control of
body weight and insulin sensitivity. Nat. Rev. Endocrinol. 11, 577–591 (2015).
11. De Vadder, F. et al. Microbiota-generated metabolites promote metabolic
benefits via gut-brain neural circuits. Cell 156, 84–96 (2014).
12. Xu, J., Chen, H. B. & Li, S. L. Understanding the molecular mechanisms of the
interplay between herbal medicines and gut microbiota. Med. Res. Rev. 37,
1140–1185 (2017).
13. Zhang, X. et al. Structural changes of gut microbiota during berberinemediated prevention of obesity and insulin resistance in high-fat diet-fed rats.
PLoS ONE 7, e42529 (2012).
14. Liu, J. et al. Oral hydroxysafflor yellow a reduces obesity in mice by modulating
the gut microbiota and serum metabolism. Pharmacol. Res. 134, 40–50 (2018).
15. Sharma, B. R., Gautam, L. N., Adhikari, D. & Karki, R. A comprehensive review on
chemical profiling of Nelumbo Nucifera: Potential for drug development.
Phytother. Res. 31, 3–26 (2017).
16. Guo, F. et al. Nuciferine prevents hepatic steatosis and injury induced by a
high-fat diet in hamsters. PLoS ONE 8, e63770 (2013).
17. Cui, H. et al. Untargeted metabolomic analysis of the effects and mechanism
of nuciferine treatment on rats with nonalcoholic fatty liver disease. Front.
Pharmacol. 11, 858 (2020).
18. Zhang, C. et al. Nuciferine ameliorates hepatic steatosis in high-fat diet/
streptozocin-induced diabetic mice through a PPARα/PGC1α pathway. Br. J.
Pharmacol. 175, 4218–4228 (2018).
19. Gu, S. et al. A sensitive liquid chromatography-tandem mass spectrometry
method for pharmacokinetics and tissue distribution of nuciferine in rats. J.
Chromatogr. B Anal. Technol. Biomed. Life Sci. 961, 20–28 (2014).
20. Caporaso, J. G. et al. QIIME allows analysis of high-throughput community
sequencing data. Nat. Methods 7, 335–336 (2010).
21. Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for
rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl.
Environ. Microbiol. 73, 5261–5267 (2007).
22. Langille, M. G. et al. Predictive functional profiling of microbial communities using 16s rRNA marker gene sequences. Nat. Biotechnol. 31, 814–821
(2013).
23. Juskiewicz, J. & Zdunczyk, Z. Lactulose-induced diarrhoea in rats: Effects on
caecal development and activities of microbial enzymes. Comp. Biochem.
Physiol. A Mol. Integr. Physiol. 133, 411–417 (2002).
24. Xiao, S. et al. A gut microbiota-targeted dietary intervention for amelioration of
chronic inflammation underlying metabolic syndrome. FEMS Microbiol. Ecol.
87, 357–367 (2014).
25. De Minicis, S. et al. Dysbiosis contributes to fibrogenesis in the course of
chronic liver injury in mice. Hepatology 59, 1738–1749 (2014).
26. Kaakoush, N. O. Insights into the role of Erysipelotrichaceae in the human host.
Front. Cell. Infect. Microbiol. 5, 84 (2015).
27. Kim, K. A., Gu, W., Lee, I. A., Joh, E. H. & Kim, D. H. High fat diet-induced gut
microbiota exacerbates inflammation and obesity in mice via the
TLR4 signaling pathway. PLoS ONE 7, e47713 (2012).
28. Martinez, I. et al. Diet-induced alterations of host cholesterol metabolism are
likely to affect the gut microbiota composition in hamsters. Appl. Environ.
Microbiol. 79, 516–524 (2013).
29. Clavel, T. et al. Isolation of bacteria from the ileal mucosa of TNFdeltaARE mice
and description of Enterorhabdus mucosicola gen. nov., sp. nov. Int. J. Syst. Evol.
Microbiol. 59, 1805–1812 (2009).
30. Kameyama, K. & Itoh, K. Intestinal colonization by a Lachnospiraceae bacterium
contributes to the development of diabetes in obese mice. Microbes Environ.
29, 427–430 (2014).
31. Togo, A. H., Valero, R., Delerce, J., Raoult, D. & Million, M. “Anaerotruncus
massiliensis,” a new species identified from human stool from an obese
patient after bariatric surgery. N. Microbes N. Infect. 14, 56–57 (2016).
32. Sakamoto, M. et al. Butyricimonas synergistica gen. nov., sp. nov. and Butyricimonas virosa sp. nov., butyric acid-producing bacteria in the family ‘Porphyromonadaceae’ isolated from rat faeces. Int. J. Syst. Evol. Microbiol. 59,
1748–1753 (2009).
33. Flint, H. J., Bayer, E. A., Rincon, M. T., Lamed, R. & White, B. A. Polysaccharide
utilization by gut bacteria: Potential for new insights from genomic analysis.
Nat. Rev. Microbiol. 6, 121–131 (2008).
34. Org, E. et al. Relationships between gut microbiota, plasma metabolites, and
metabolic syndrome traits in the METSIM cohort. Genome Biol. 18, 70 (2017).
35. Komaroff, A. L. The microbiome and risk for obesity and diabetes. JAMA 317,
355–356 (2017).
36. Cremonini, E. et al. (-)-Epicatechin protects the intestinal barrier from high fat
diet-induced permeabilization: Implications for steatosis and insulin resistance.
Redox Biol. 14, 588–599 (2018).
37. Suzuki, T. Regulation of intestinal epithelial permeability by tight junctions. Cell.
Mol. Life Sci. 70, 631–659 (2013).
38. Feldman, G. J., Mullin, J. M. & Ryan, M. P. Occludin: Structure, function and
regulation. Adv. Drug Deliv. Rev. 57, 883–917 (2005).
39. Liu, M. et al. Potent effects of dioscin against obesity in mice. Sci. Rep. 5, 7973
(2015).
40. Zietak, M. et al. Altered microbiota contributes to reduced diet-induced
obesity upon cold exposure. Cell Metab. 23, 1216–1223 (2016).
41. Daniel, H. et al. High-fat diet alters gut microbiota physiology in mice. ISME J. 8,
295–308 (2014).
42. Abdallah Ismail, N. et al. Frequency of Firmicutes and Bacteroidetes in gut
microbiota in obese and normal weight Egyptian children and adults. Arch.
Med. Sci. 7, 501–507 (2011).
43. Bervoets, L. et al. Differences in gut microbiota composition between obese
and lean children: a cross-sectional study. Gut Pathog. 5, 10 (2013).
44. Clavel, T. et al. Intestinal microbiota in metabolic diseases: from bacterial
community structure and functions to species of pathophysiological relevance. Gut Microbes 5, 544–551 (2014).
45. Stenman, L. K., Holma, R., Eggert, A. & Korpela, R. A novel mechanism for gut
barrier dysfunction by dietary fat: Epithelial disruption by hydrophobic bile
acids. Am. J. Physiol. Gastrointest. Liver Physiol. 304, G227–G234 (2013).
46. Backhed, F., Manchester, J. K., Semenkovich, C. F. & Gordon, J. I. Mechanisms
underlying the resistance to diet-induced obesity in germ-free mice. Proc. Natl
Acad. Sci. USA 104, 979–984 (2007).
47. Backhed, F. et al. The gut microbiota as an environmental factor that regulates
fat storage. Proc. Natl Acad. Sci. USA 101, 15718–15723 (2004).
Wang et al. Experimental & Molecular Medicine (2020) 52:1959–1975 1974
Official journal of the Korean Society for Biochemistry and Molecular Biology
48. Tremaroli, V. & Backhed, F. Functional interactions between the gut microbiota
and host metabolism. Nature 489, 242–249 (2012).
49. Parker, B. L. et al. An integrative systems genetic analysis of mammalian lipid
metabolism. Nature 567, 187–193 (2019).
50. Meikle, P. J. & Summers, S. A. Sphingolipids and phospholipids in insulin resistance and related metabolic disorders. Nat. Rev. Endocrinol. 13, 79–91 (2017).
51. Rauschert, S. et al. Lipidomics reveals associations of phospholipids with
obesity and insulin resistance in young adults. J. Clin. Endocrinol. Metab. 101,
871–879 (2016).
52. Lackey, D. E. & Olefsky, J. M. Regulation of metabolism by the innate immune
system. Nat. Rev. Endocrinol. 12, 15–28 (2016).
53. Rodriguez-Nunez, I. et al. Nod2 and Nod2-regulated microbiota protect BALB/c
mice from diet-induced obesity and metabolic dysfunction. Sci. Rep. 7, 548 (2017).
54. Saad, M. J., Santos, A. & Prada, P. O. Linking gut microbiota and inflammation
to obesity and insulin resistance. Physiology 31, 283–293 (2016).
55. Cani, P. D. et al. Metabolic endotoxemia initiates obesity and insulin resistance.
Diabetes 56, 1761–1772 (2007).
56. Puertollano, E., Kolida, S. & Yaqoob, P. Biological significance of short-chain
fatty acid metabolism by the intestinal microbiome. Curr. Opin. Clin. Nutr.
Metab. Care 17, 139–144 (2014).
57. Hong, Y. H. et al. Acetate and propionate short chain fatty acids stimulate
adipogenesis via GPCR43. Endocrinology 146, 5092–5099 (2005).
58. Xiong, Y. et al. Short-chain fatty acids stimulate leptin production in adipocytes
through the G protein-coupled receptor GPR41. Proc. Natl Acad. Sci. USA 101,
1045–1050 (2004).
59. Peng, L., He, Z., Chen, W., Holzman, I. R. & Lin, J. Effects of butyrate on intestinal
barrier function in a Caco-2 cell monolayer model of intestinal barrier. Pediatr.
Res. 61, 37–41 (2007).
60. Ploger, S. et al. Microbial butyrate and its role for barrier function in the
gastrointestinal tract. Ann. N. Y. Acad. Sci. 1258, 52–59 (2012).
Wang et al. Experimental & Molecular Medicine (2020) 52:1959–1975 1975
Official journal of the Korean Society for Biochemistry and Molecular Biology