Conclusion
The results highlight the high phenolic content of N. alba leaves, denoting the predominance of hydrolysable tannins, mainly ellagitannins, in addition to the flavonoid content of major antioxidant activity. N. alba also appeared as a rich source of essential fatty acid with high nutritional value. Administration of N. alba extract remarkably protected against CCl4-induced hepatotoxicity to an extent comparable with silymarin. The suppression of oxidative stress and the inhibition of a crucial pro-inflammatory mediator such as TNF-α might be the possible mechanisms for the hepatoprotective activity of N. alba that help in restoration of the physiological and histological features of the liver. This preclinical study provides convincing evidence that N. alba extract can control inflammatory and oxidative stress-related liver diseases.
Abbreviations
- A:
-
Absorbance
- AAE:
-
Aqueous ethanolic extract
- ALP:
-
Alkaline phosphatase
- ALT:
-
Alanine aminotransferase
- AST:
-
Aspartate aminotransferase
- CAT:
-
Catalase
- DPPH:
-
1, 1-Diphenyl-2-picrylhydrazyl
- EFAs:
-
Essential fatty acids
- FAME:
-
Fatty acid methyl ester
- GGT:
-
Gamma glutamyl transpeptidase
- GLC:
-
Gas Liquid Chromatography
- GSH:
-
Reduced glutathione
- HR-ESI-MS/MS:
-
High-resolution electrospray ionisation mass spectrometry
- MDA:
-
Malondialdehyde
- MUFA:
-
Monounsaturated fatty acids
- PUFA:
-
Polyunsaturated fatty acids
- SFA:
-
Saturated fatty acids
- SOD:
-
Superoxide dismutase
- TAC:
-
Total antioxidant capacity
- TNF-α:
-
Tumour necrosis factor
- USM:
-
Unsaponifiable matter
References
-
Weber LW, Boll M, Stampfl A. Hepatotoxicity and mechanism of action of haloalkanes: carbon tetrachloride as a toxicological model. Crit Rev Toxicol. 2003;33(2):105–36. doi:10.1080/713611034.
-
Liu C, Tao Q, Sun M, Wu JZ, Yang W, Jian P, Peng J, Hu Y, Liu C, Liu P. Kupffer cells are associated with apoptosis, inflammation and fibrotic effects in hepatic fibrosis in rats. Lab Invest. 2010;90(12):1805–16.
-
Cesaratto L, Vascotto C, Calligaris S, Tell G. The importance of redox state in liver damage. Ann Hepatol. 2004;3(3):86–92.
-
Basu S. Carbon tetrachloride-induced lipid peroxidation: eicosanoid formation and their regulation by antioxidant nutrients. Toxicology. 2003;189(1–2):113–27. doi:10.1016/S0300-483X(03)00157-4.
-
James AD. Duke’s hand book of medicinal plants of the bible. USA: Taylor and Francis group; 2008. p. 302–5.
-
Jesurun J, Jagadeesh S, Ganesan S, Rao V, Eerike M. Anti-inflammatory activity of ethanolic extract of Nymphaea alba flower in swiss albino mice. Int J Med Res Heal Sci. 2013;2(3):474–8. doi:10.5958/j.2319-5886.2.3.082.
-
Paharia AK, Pandurangan A. Evaluation of hepatoprotective activity of ethanolic extract of Nymphaea alba Linn flower in experimental rats. Int J Biomed Res. 2013;4(7):349–54.
-
Madhusudhanan N, Lakshmi T, Kumar G, Ramakrishanan, Konda V, Roy A, Geetha R. Invitro antioxidant and free radical scavenging activity of aqueous and ethanolic flower extract of Nymphaea alba. Int J Drug Dev Res. 2011;3(3):252–8.
-
Jambor J, Skrzypczak L. Phenolic acids from the flowers of Nymphaea alba. Acta Soc Bot Pol. 1991;60(1–2):127–32. doi:10.5586/asbp.1991.011.
-
Jambor J, Skrzypczak L. Flavonoids from the flowers of Nymphaea alba L. Acta Soc Bot Pol. 1991;60(1–2):119–25. doi:10.5586/asbp.1991.010.
-
Bakr RO, Wasfi R, Swilam, Sallam IE. Characterization of the bioactive constituents of Nymphaea alba rhizomes and evaluation of anti-biofilm as well as antioxidant and cytotoxic properties. J Med Plants Res. 2016;10(26):390–401.
-
Khan N, Sultana S. Inhibition of potassium bromate-induced renal oxidative stress and hyperproliferative response by Nymphaea alba in Wistar rats. J Enzyme Inhib Med Chem. 2005;20(3):275–83. doi:10.1080/14756360400028119.
-
Khan N, Sultana S. Anticarcinogenic effect of Nymphaea alba against oxidative damage, hyperproliferative response and renal carcinogenesis in Wistar rats. Mol Cell Biochem. 2005;271(1–2):1–11. doi:10.1007/s11010-005-2258-2.
-
Thippeswamy BS, Mishra B, Veerapur VP, Gupta G. Anxiolytic activity of Nymphaea alba Linn. in mice as experimental models of anxiety. Indian J Pharmacol. 2011;43(1):50–5. doi:10.4103/0253-7613.75670.
-
Bhandarkar MR, Khan A. Antihepatotoxic effect of Nymphaea stellata willd., against carbon tetrachloride-induced hepatic damage in albino rats. J Ethnopharmacol. 2004;91(1):61–4.
-
Hassaan Y, Handoussa H, El-Khatib AH, Linscheid MW, El Sayed N, Ayoub N. Evaluation of plant phenolic metabolites as a source of alzheimer’s drug leads. Bio Med Res Int. 2014; Article ID 843263.
-
Vogel AI. A textbook of practical organic chemistry, 3rd ed. London: English language book society and Longman Group Ltd; 1939.
-
Shimada K, Fujikawa K, Yahara K, Nakamura T. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J Agric Food Chem. 1992;40(6):945–8. doi:10.1021/jf00018a005.
-
Oktay M, Gülçin İ, Küfrevioğlu Öİ. Determination of in vitro antioxidant activity of fennel (Foeniculum vulgare) seed extracts. LWT - Food Sci Technol. 2003;36(2):263–71. doi:10.1016/S0023-6438(02)00226-8.
-
El BK, Hashimoto Y, Muzandu K, Ikenaka Y, Ibrahim ZS, Kazusaka A, Fujita S, Ishizuka M. Protective effect of Pleurotus cornucopiae mushroom extract on carbon tetrachloride-induced hepatotoxicity. Japanese J Vet Res. 2009;57(2):109–18.
-
Mariani E, Polidori MC, Cherubini A, Mecocci P. Oxidative stress in brain aging, neurodegenerative and vascular diseases: An overview. J Chromatogr B. 2005;827(1):65–75. doi:10.1016/j.jchromb.2005.04.023.
-
Chua LS, Latiff NA, Lee SY, Lee CT, Sarmidi MR, Aziz RA. Flavonoids and phenolic acids from Labisia pumila (Kacip Fatimah). Food Chem. 2011;127(3):1186–92. doi:10.1016/j.foodchem.2011.01.122.
-
Hegnauer R. Phytochemistry and plant taxonomy- an essay on the chemotaxonomy of higher plants. Phytochemistry. 1986;25(7):1519–35. doi:10.1016/S0031-9422(00)81204-2.
-
Okuda T, Yoshida T, Hatano T. Economic and medicinal plant research. London: Academic; 1991.
-
Okuda T, Yoshida T, Hatano T. Hydrolyzable tannins and related polyphenols. Fortschr Chem Org Naturst. 1995;66:101–17.
-
Hukkanen AT, Kokko HI, Buchala AJ, McDougall GJ, Stewart D, Kärenlampi SO, Karjalainen RO. Benzothiadiazole induces the accumulation of phenolics and improves resistance to powdery mildew in strawberries. J Agric Food Chem. 2007;55(5):1862–70. doi:10.1021/jf063452p.
-
Mullen W, Yokota T, Lean ME, Crozier A. Analysis of ellagitannins and conjugates of ellagic acid and quercetin in raspberry fruits by LC–MSn. Phytochemistry. 2003;64(2):617–24. doi:10.1016/S0031-9422(03)00281-4.
-
Bai N, He K, Roller M, Zheng B, Chen X, Shao Z, Peng T, Zheng Q. Active compounds from Lagerstroemia speciosa, insulin-like glucose uptake-stimulatory/inhibitory and adipocyte differentiation-inhibitory activities in 3 T3-L1 cells. J Agric Food Chem. 2008;56(24):11668–74. doi:10.1021/jf802152z.
-
Mena P, Calani L, Dall'Asta C, Galaverna G, García-Viguera C, Bruni R, Crozier A, Del Rio D. Rapid and comprehensive evaluation of (Poly)phenolic compounds in pomegranate (Punica granatum L.) Juice by UHPLC-MSn. Molecules. 2012;17(12):14821–40. doi:10.3390/molecules171214821.
-
Fischer UA, Carle R, Kammerer DR. Identification and quantification of phenolic compounds from pomegranate (Punica granatum L.) peel, mesocarp, aril and differently produced juices by HPLC-DAD–ESI/MSn. Food Chem. 2011;127(2):807–21. doi:10.1016/j.foodchem.2010.12.156.
-
Barros L, Dueñas M, Carvalho AM, Ferreira IC, Santos-Buelga C. Characterization of phenolic compounds in flowers of wild medicinal plants from Northeastern Portugal. Food Chem Toxicol. 2012;50(5):1576–82. doi:10.1016/j.fct.2012.02.004.
-
Seeram NP, Lee R, Scheuller HS, Heber D. Identification of phenolic compounds in strawberries by liquid chromatography electrospray ionization mass spectroscopy. Food Chem. 2006;97(1):1–11. doi:10.1016/j.foodchem.2005.02.047.
-
Sentandreu E, Cerdán-Calero M, Sendra JM. Phenolic profile characterization of pomegranate (Punica granatum) juice by high-performance liquid chromatography with diode array detection coupled to an electrospray ion trap mass analyzer. J Food Compos Anal. 2013;30(1):32–40. doi:10.1016/j.jfca.2013.01.003.
-
Choi SJ, Kim JK, Jang JM, Shin KH, Lim SS. Rapid identification of the α-glucosidase inhibitory compounds from Thunberg’s Geranium (Geranium thunbergii Sieb. et Zucc.). Food Sci Biotechnol. 2012;21(4):987–96.
-
Tanaka T, Tong H, Xu Y, Ishimaru K, Nonaka G, Nishioka I. Tannins and related compounds CXVII. Isolation and characterization of three new ellagitannis, lagerstannin A, B and C, having a gluconic acid core, from Lagerstoemia speciosa (L.) PERS. Chem Pharm Bull. 1992;40(11):2975–80.
-
Huang ST, Wang CY, Yang RC, Wu HT, Yang SH, Cheng YC, Pang JH. Ellagic acid, the active compound of Phyllanthus urinaria, exerts in vivo anti-angiogenic effect and inhibits MMP-2 activity. Evid Based Complement Alternat Med. 2011;2011:215035. doi:10.1093/ecam/nep207.
-
Wu HY, Lin TK, Kuo HM, Huang YL, Liou CW, Wang PW, Chuang JH, Huang ST. Phyllanthus urinaria induces apoptosis in human osteosarcoma 143B cells via activation of Fas/FasL- and mitochondria-mediated pathways. Evid Based Complement Alternat Med. 2012;2012:925824. doi:10.1155/2012/925824.
-
Piwowarski JP, Kiss AK. C-glucosidic ellagitannins from Lythri herba (European Pharmacopoeia): chromatographic profile and structure determination. Phytochem Anal. 2012;24(4):336–48. doi:10.1002/pca.2415.
-
Martucci MEP, De Vos RCH, Carollo CA, Gobbo-Neto L. Metabolomics as a potential chemotaxonomical tool: application in the genus Vernonia schreb. PLoS One. 2014;9, e93149. doi:10.1371/journal.pone.0093149.
-
Zhu M, Zheng X, Shu Q, Li H, Zhong P, Zhang H, Xu Y, Wang L, Wang L. Relationship between the composition of flavonoids and flower colors variation in tropical water lily (Nymphaea) cultivars. PLoS One. 2012;7(4), e34335. doi:10.1371/journal.pone.0034335.
-
Pérez-Magariño S, Revilla I, González-SanJosé ML, Beltrán S. Various applications of liquid chromatography–mass spectrometry to the analysis of phenolic compounds. J Chromatogr A. 1999;847(1–2):75–81. doi:10.1016/S0021-9673(99)00255-1.
-
Eromosele CO, Eromosele IC. Fatty acid compositions of seed oils of Haematostaphis barteri and Ximenia americana. Bioresour Technol. 2002;82(3):303–4. doi:10.1016/S0960-8524(01)00179-1.
-
Vivancos M, Moreno JJ. β-Sitosterol modulates antioxidant enzyme response in RAW 264.7 macrophages. Free Radic Biol Med. 2005;39(1):91–7. doi:10.1016/j.freeradbiomed.2005.02.025.
-
Dziedzic SZ, Hudson BJF. Polyhydroxy chalcones and flavanones as antioxidants for edible oils. Food Chem. 1983;12(3):205–12. doi:10.1016/0308-8146(83)90007-9.
-
Rice-Evans C. Flavonoid antioxidants. Curr Med Chem. 2001;8(7):797–807.
-
López-Vélez M, Martínez-Martínez F, Del Valle-Ribes C. The study of phenolic compounds as natural antioxidants in wine. Crit Rev Food Sci Nutr. 2003;43(3):233–44. doi:10.1080/10408690390826509.
-
Berger J, Kowdley KV. Is silymarin hepatoprotective in alcoholic liver disease? J Clin Gastroenterol. 2003;37(4):278–9.
-
Karimi G, Vahabzadeh M, Lari P, Rashedinia M, Moshiri M. “Silymarin”, a promising pharmacological agent for treatment of diseases. Iran J Basic Med Sci. 2011;14(4):308–17.
-
Liang B, Guo XL, Jin J, Ma YC, Feng ZQ. Glycyrrhizic acid inhibits apoptosis and fibrosis in carbon-tetrachloride-induced rat liver injury. World J Gastroenterol. 2015;21(17):5271–80. doi:10.3748/wjg.v21.i17.5271.
-
Dai N, Zou Y, Zhu L, Wang HF, Dai MG. Antioxidant properties of proanthocyanidins attenuate carbon tetrachloride (CCl(4))–induced steatosis and liver injury in rats via CYP2E1 regulation. J Med Food. 2014;17(6):663–9. doi:10.1089/jmf.2013.2834.
-
Roy S, Sannigrahi S, Majumdar S, Ghosh B, Sarkar B. Resveratrol regulates antioxidant status, inhibits cytokine expression and restricts apoptosis in carbon tetrachloride induced rat hepatic injury. Oxid Med Cell Longev. 2011;2011:703676. doi:10.1155/2011/703676.
-
Singh D, Arya PV, Sharma A, Dobhal MP, Gupta RS. Modulatory potential of α-amyrin against hepatic oxidative stress through antioxidant status in wistar albino rats. J Ethnopharmacol. 2015;161:186–93. doi:10.1016/j.jep.2014.12.025.
Acknowledgments
The authors are thankful to Dr. Sheren Youns, Department of Pathology, Faculty of Medicine, Menofyia University, Egypt, for her help in the histopathological part of the study.
Funding
This research is not supported by any funding agency.
Availability of data and materials
The data and materials of this article are included within the article.
Authors’ contributions
All authors conceived and designed the experiments. RO Bakr helped in plant extraction, interpretation of HR-ESI-MS/MS, GLC analysis, and DPPH assay. MM El-Naa, conducted animal experiments for hepatoprotective, anti-oxidant and anti-inflammatory activities and interpreted data. SS Zaghloul, helped in designing the experiment, revising the manuscript. MM Omar helped in plant extraction, designing and conducting the animal experiment. All authors read and approved the final manuscript.
Competing interests
The authors declare there are no competing interests.
Consent for publication
Not applicable.
Ethics approval and consent to participate
Animal care and handling was performed in conformance with approved protocols of ethics committee of the MSA University (Reference number EC 10 PG 10/2011) and Egyptian Community guidelines for animal care.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.