Part 3 Profile of bioactive compounds in Nymphaea alba L. leaves growing in Egypt: hepatoprotective, antioxidant and anti-inflammatory activity

Conclusion

The results highlight the high phenolic content of N. alba leaves, denoting the predominance of hydrolysable tannins, mainly ellagitannins, in addition to the flavonoid content of major antioxidant activity. N. alba also appeared as a rich source of essential fatty acid with high nutritional value. Administration of N. alba extract remarkably protected against CCl4-induced hepatotoxicity to an extent comparable with silymarin. The suppression of oxidative stress and the inhibition of a crucial pro-inflammatory mediator such as TNF-α might be the possible mechanisms for the hepatoprotective activity of N. alba that help in restoration of the physiological and histological features of the liver. This preclinical study provides convincing evidence that N. alba extract can control inflammatory and oxidative stress-related liver diseases.

Abbreviations

A:

Absorbance

AAE:

Aqueous ethanolic extract

ALP:

Alkaline phosphatase

ALT:

Alanine aminotransferase

AST:

Aspartate aminotransferase

CAT:

Catalase

DPPH:

1, 1-Diphenyl-2-picrylhydrazyl

EFAs:

Essential fatty acids

FAME:

Fatty acid methyl ester

GGT:

Gamma glutamyl transpeptidase

GLC:

Gas Liquid Chromatography

GSH:

Reduced glutathione

HR-ESI-MS/MS:

High-resolution electrospray ionisation mass spectrometry

MDA:

Malondialdehyde

MUFA:

Monounsaturated fatty acids

PUFA:

Polyunsaturated fatty acids

SFA:

Saturated fatty acids

SOD:

Superoxide dismutase

TAC:

Total antioxidant capacity

TNF-α:

Tumour necrosis factor

USM:

Unsaponifiable matter

References

  1. Weber LW, Boll M, Stampfl A. Hepatotoxicity and mechanism of action of haloalkanes: carbon tetrachloride as a toxicological model. Crit Rev Toxicol. 2003;33(2):105–36. doi:10.1080/713611034.

    Article CAS PubMed Google Scholar 

  2. Liu C, Tao Q, Sun M, Wu JZ, Yang W, Jian P, Peng J, Hu Y, Liu C, Liu P. Kupffer cells are associated with apoptosis, inflammation and fibrotic effects in hepatic fibrosis in rats. Lab Invest. 2010;90(12):1805–16.

    Article CAS PubMed Google Scholar 

  3. Cesaratto L, Vascotto C, Calligaris S, Tell G. The importance of redox state in liver damage. Ann Hepatol. 2004;3(3):86–92.

    PubMed Google Scholar 

  4. Basu S. Carbon tetrachloride-induced lipid peroxidation: eicosanoid formation and their regulation by antioxidant nutrients. Toxicology. 2003;189(1–2):113–27. doi:10.1016/S0300-483X(03)00157-4.

    Article CAS PubMed Google Scholar 

  5. James AD. Duke’s hand book of medicinal plants of the bible. USA: Taylor and Francis group; 2008. p. 302–5.

    Google Scholar 

  6. Jesurun J, Jagadeesh S, Ganesan S, Rao V, Eerike M. Anti-inflammatory activity of ethanolic extract of Nymphaea alba flower in swiss albino mice. Int J Med Res Heal Sci. 2013;2(3):474–8. doi:10.5958/j.2319-5886.2.3.082.

    Google Scholar 

  7. Paharia AK, Pandurangan A. Evaluation of hepatoprotective activity of ethanolic extract of Nymphaea alba Linn flower in experimental rats. Int J Biomed Res. 2013;4(7):349–54.

    Article Google Scholar 

  8. Madhusudhanan N, Lakshmi T, Kumar G, Ramakrishanan, Konda V, Roy A, Geetha R. Invitro antioxidant and free radical scavenging activity of aqueous and ethanolic flower extract of Nymphaea alba. Int J Drug Dev Res. 2011;3(3):252–8.

    Google Scholar 

  9. Jambor J, Skrzypczak L. Phenolic acids from the flowers of Nymphaea alba. Acta Soc Bot Pol. 1991;60(1–2):127–32. doi:10.5586/asbp.1991.011.

    CAS Google Scholar 

  10. Jambor J, Skrzypczak L. Flavonoids from the flowers of Nymphaea alba L. Acta Soc Bot Pol. 1991;60(1–2):119–25. doi:10.5586/asbp.1991.010.

    CAS Google Scholar 

  11. Bakr RO, Wasfi R, Swilam, Sallam IE. Characterization of the bioactive constituents of Nymphaea alba rhizomes and evaluation of anti-biofilm as well as antioxidant and cytotoxic properties. J Med Plants Res. 2016;10(26):390–401.

    Article Google Scholar 

  12. Khan N, Sultana S. Inhibition of potassium bromate-induced renal oxidative stress and hyperproliferative response by Nymphaea alba in Wistar rats. J Enzyme Inhib Med Chem. 2005;20(3):275–83. doi:10.1080/14756360400028119.

    Article CAS PubMed Google Scholar 

  13. Khan N, Sultana S. Anticarcinogenic effect of Nymphaea alba against oxidative damage, hyperproliferative response and renal carcinogenesis in Wistar rats. Mol Cell Biochem. 2005;271(1–2):1–11. doi:10.1007/s11010-005-2258-2.

    Article CAS PubMed Google Scholar 

  14. Thippeswamy BS, Mishra B, Veerapur VP, Gupta G. Anxiolytic activity of Nymphaea alba Linn. in mice as experimental models of anxiety. Indian J Pharmacol. 2011;43(1):50–5. doi:10.4103/0253-7613.75670.

    Article CAS PubMed PubMed Central Google Scholar 

  15. Bhandarkar MR, Khan A. Antihepatotoxic effect of Nymphaea stellata willd., against carbon tetrachloride-induced hepatic damage in albino rats. J Ethnopharmacol. 2004;91(1):61–4.

    Article PubMed Google Scholar 

  16. Hassaan Y, Handoussa H, El-Khatib AH, Linscheid MW, El Sayed N, Ayoub N. Evaluation of plant phenolic metabolites as a source of alzheimer’s drug leads. Bio Med Res Int. 2014; Article ID 843263.

  17. Vogel AI. A textbook of practical organic chemistry, 3rd ed. London: English language book society and Longman Group Ltd; 1939.

  18. Shimada K, Fujikawa K, Yahara K, Nakamura T. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J Agric Food Chem. 1992;40(6):945–8. doi:10.1021/jf00018a005.

    Article CAS Google Scholar 

  19. Oktay M, Gülçin İ, Küfrevioğlu Öİ. Determination of in vitro antioxidant activity of fennel (Foeniculum vulgare) seed extracts. LWT - Food Sci Technol. 2003;36(2):263–71. doi:10.1016/S0023-6438(02)00226-8.

    Article CAS Google Scholar 

  20. El BK, Hashimoto Y, Muzandu K, Ikenaka Y, Ibrahim ZS, Kazusaka A, Fujita S, Ishizuka M. Protective effect of Pleurotus cornucopiae mushroom extract on carbon tetrachloride-induced hepatotoxicity. Japanese J Vet Res. 2009;57(2):109–18.

    Google Scholar 

  21. Mariani E, Polidori MC, Cherubini A, Mecocci P. Oxidative stress in brain aging, neurodegenerative and vascular diseases: An overview. J Chromatogr B. 2005;827(1):65–75. doi:10.1016/j.jchromb.2005.04.023.

    Article CAS Google Scholar 

  22. Chua LS, Latiff NA, Lee SY, Lee CT, Sarmidi MR, Aziz RA. Flavonoids and phenolic acids from Labisia pumila (Kacip Fatimah). Food Chem. 2011;127(3):1186–92. doi:10.1016/j.foodchem.2011.01.122.

    Article CAS PubMed Google Scholar 

  23. Hegnauer R. Phytochemistry and plant taxonomy- an essay on the chemotaxonomy of higher plants. Phytochemistry. 1986;25(7):1519–35. doi:10.1016/S0031-9422(00)81204-2.

    Article CAS Google Scholar 

  24. Okuda T, Yoshida T, Hatano T. Economic and medicinal plant research. London: Academic; 1991.

    Google Scholar 

  25. Okuda T, Yoshida T, Hatano T. Hydrolyzable tannins and related polyphenols. Fortschr Chem Org Naturst. 1995;66:101–17.

    Google Scholar 

  26. Hukkanen AT, Kokko HI, Buchala AJ, McDougall GJ, Stewart D, Kärenlampi SO, Karjalainen RO. Benzothiadiazole induces the accumulation of phenolics and improves resistance to powdery mildew in strawberries. J Agric Food Chem. 2007;55(5):1862–70. doi:10.1021/jf063452p.

    Article CAS PubMed Google Scholar 

  27. Mullen W, Yokota T, Lean ME, Crozier A. Analysis of ellagitannins and conjugates of ellagic acid and quercetin in raspberry fruits by LC–MSn. Phytochemistry. 2003;64(2):617–24. doi:10.1016/S0031-9422(03)00281-4.

    Article CAS PubMed Google Scholar 

  28. Bai N, He K, Roller M, Zheng B, Chen X, Shao Z, Peng T, Zheng Q. Active compounds from Lagerstroemia speciosa, insulin-like glucose uptake-stimulatory/inhibitory and adipocyte differentiation-inhibitory activities in 3 T3-L1 cells. J Agric Food Chem. 2008;56(24):11668–74. doi:10.1021/jf802152z.

    Article CAS PubMed Google Scholar 

  29. Mena P, Calani L, Dall'Asta C, Galaverna G, García-Viguera C, Bruni R, Crozier A, Del Rio D. Rapid and comprehensive evaluation of (Poly)phenolic compounds in pomegranate (Punica granatum L.) Juice by UHPLC-MSn. Molecules. 2012;17(12):14821–40. doi:10.3390/molecules171214821.

    Article CAS PubMed Google Scholar 

  30. Fischer UA, Carle R, Kammerer DR. Identification and quantification of phenolic compounds from pomegranate (Punica granatum L.) peel, mesocarp, aril and differently produced juices by HPLC-DAD–ESI/MSn. Food Chem. 2011;127(2):807–21. doi:10.1016/j.foodchem.2010.12.156.

    Article CAS PubMed Google Scholar 

  31. Barros L, Dueñas M, Carvalho AM, Ferreira IC, Santos-Buelga C. Characterization of phenolic compounds in flowers of wild medicinal plants from Northeastern Portugal. Food Chem Toxicol. 2012;50(5):1576–82. doi:10.1016/j.fct.2012.02.004.

    Article CAS PubMed Google Scholar 

  32. Seeram NP, Lee R, Scheuller HS, Heber D. Identification of phenolic compounds in strawberries by liquid chromatography electrospray ionization mass spectroscopy. Food Chem. 2006;97(1):1–11. doi:10.1016/j.foodchem.2005.02.047.

    Article CAS Google Scholar 

  33. Sentandreu E, Cerdán-Calero M, Sendra JM. Phenolic profile characterization of pomegranate (Punica granatum) juice by high-performance liquid chromatography with diode array detection coupled to an electrospray ion trap mass analyzer. J Food Compos Anal. 2013;30(1):32–40. doi:10.1016/j.jfca.2013.01.003.

    Article CAS Google Scholar 

  34. Choi SJ, Kim JK, Jang JM, Shin KH, Lim SS. Rapid identification of the α-glucosidase inhibitory compounds from Thunberg’s Geranium (Geranium thunbergii Sieb. et Zucc.). Food Sci Biotechnol. 2012;21(4):987–96.

    Article CAS Google Scholar 

  35. Tanaka T, Tong H, Xu Y, Ishimaru K, Nonaka G, Nishioka I. Tannins and related compounds CXVII. Isolation and characterization of three new ellagitannis, lagerstannin A, B and C, having a gluconic acid core, from Lagerstoemia speciosa (L.) PERS. Chem Pharm Bull. 1992;40(11):2975–80.

    Article CAS Google Scholar 

  36. Huang ST, Wang CY, Yang RC, Wu HT, Yang SH, Cheng YC, Pang JH. Ellagic acid, the active compound of Phyllanthus urinaria, exerts in vivo anti-angiogenic effect and inhibits MMP-2 activity. Evid Based Complement Alternat Med. 2011;2011:215035. doi:10.1093/ecam/nep207.

    PubMed PubMed Central Google Scholar 

  37. Wu HY, Lin TK, Kuo HM, Huang YL, Liou CW, Wang PW, Chuang JH, Huang ST. Phyllanthus urinaria induces apoptosis in human osteosarcoma 143B cells via activation of Fas/FasL- and mitochondria-mediated pathways. Evid Based Complement Alternat Med. 2012;2012:925824. doi:10.1155/2012/925824.

    PubMed PubMed Central Google Scholar 

  38. Piwowarski JP, Kiss AK. C-glucosidic ellagitannins from Lythri herba (European Pharmacopoeia): chromatographic profile and structure determination. Phytochem Anal. 2012;24(4):336–48. doi:10.1002/pca.2415.

    Article PubMed Google Scholar 

  39. Martucci MEP, De Vos RCH, Carollo CA, Gobbo-Neto L. Metabolomics as a potential chemotaxonomical tool: application in the genus Vernonia schreb. PLoS One. 2014;9, e93149. doi:10.1371/journal.pone.0093149.

    Article PubMed PubMed Central Google Scholar 

  40. Zhu M, Zheng X, Shu Q, Li H, Zhong P, Zhang H, Xu Y, Wang L, Wang L. Relationship between the composition of flavonoids and flower colors variation in tropical water lily (Nymphaea) cultivars. PLoS One. 2012;7(4), e34335. doi:10.1371/journal.pone.0034335.

    Article CAS PubMed PubMed Central Google Scholar 

  41. Pérez-Magariño S, Revilla I, González-SanJosé ML, Beltrán S. Various applications of liquid chromatography–mass spectrometry to the analysis of phenolic compounds. J Chromatogr A. 1999;847(1–2):75–81. doi:10.1016/S0021-9673(99)00255-1.

    Article PubMed Google Scholar 

  42. Eromosele CO, Eromosele IC. Fatty acid compositions of seed oils of Haematostaphis barteri and Ximenia americana. Bioresour Technol. 2002;82(3):303–4. doi:10.1016/S0960-8524(01)00179-1.

    Article CAS PubMed Google Scholar 

  43. Vivancos M, Moreno JJ. β-Sitosterol modulates antioxidant enzyme response in RAW 264.7 macrophages. Free Radic Biol Med. 2005;39(1):91–7. doi:10.1016/j.freeradbiomed.2005.02.025.

    Article CAS PubMed Google Scholar 

  44. Dziedzic SZ, Hudson BJF. Polyhydroxy chalcones and flavanones as antioxidants for edible oils. Food Chem. 1983;12(3):205–12. doi:10.1016/0308-8146(83)90007-9.

    Article CAS Google Scholar 

  45. Rice-Evans C. Flavonoid antioxidants. Curr Med Chem. 2001;8(7):797–807.

    Article CAS PubMed Google Scholar 

  46. López-Vélez M, Martínez-Martínez F, Del Valle-Ribes C. The study of phenolic compounds as natural antioxidants in wine. Crit Rev Food Sci Nutr. 2003;43(3):233–44. doi:10.1080/10408690390826509.

    Article PubMed Google Scholar 

  47. Berger J, Kowdley KV. Is silymarin hepatoprotective in alcoholic liver disease? J Clin Gastroenterol. 2003;37(4):278–9.

    Article PubMed Google Scholar 

  48. Karimi G, Vahabzadeh M, Lari P, Rashedinia M, Moshiri M. “Silymarin”, a promising pharmacological agent for treatment of diseases. Iran J Basic Med Sci. 2011;14(4):308–17.

    CAS PubMed PubMed Central Google Scholar 

  49. Liang B, Guo XL, Jin J, Ma YC, Feng ZQ. Glycyrrhizic acid inhibits apoptosis and fibrosis in carbon-tetrachloride-induced rat liver injury. World J Gastroenterol. 2015;21(17):5271–80. doi:10.3748/wjg.v21.i17.5271.

    Article CAS PubMed PubMed Central Google Scholar 

  50. Dai N, Zou Y, Zhu L, Wang HF, Dai MG. Antioxidant properties of proanthocyanidins attenuate carbon tetrachloride (CCl(4))–induced steatosis and liver injury in rats via CYP2E1 regulation. J Med Food. 2014;17(6):663–9. doi:10.1089/jmf.2013.2834.

    Article CAS PubMed PubMed Central Google Scholar 

  51. Roy S, Sannigrahi S, Majumdar S, Ghosh B, Sarkar B. Resveratrol regulates antioxidant status, inhibits cytokine expression and restricts apoptosis in carbon tetrachloride induced rat hepatic injury. Oxid Med Cell Longev. 2011;2011:703676. doi:10.1155/2011/703676.

    Article PubMed PubMed Central Google Scholar 

  52. Singh D, Arya PV, Sharma A, Dobhal MP, Gupta RS. Modulatory potential of α-amyrin against hepatic oxidative stress through antioxidant status in wistar albino rats. J Ethnopharmacol. 2015;161:186–93. doi:10.1016/j.jep.2014.12.025.

    Article CAS PubMed Google Scholar 

Download references

Acknowledgments

The authors are thankful to Dr. Sheren Youns, Department of Pathology, Faculty of Medicine, Menofyia University, Egypt, for her help in the histopathological part of the study.

Funding

This research is not supported by any funding agency.

Availability of data and materials

The data and materials of this article are included within the article.

Authors’ contributions

All authors conceived and designed the experiments. RO Bakr helped in plant extraction, interpretation of HR-ESI-MS/MS, GLC analysis, and DPPH assay. MM El-Naa, conducted animal experiments for hepatoprotective, anti-oxidant and anti-inflammatory activities and interpreted data. SS Zaghloul, helped in designing the experiment, revising the manuscript. MM Omar helped in plant extraction, designing and conducting the animal experiment. All authors read and approved the final manuscript.

Competing interests

The authors declare there are no competing interests.

Consent for publication

Not applicable.

Ethics approval and consent to participate

Animal care and handling was performed in conformance with approved protocols of ethics committee of the MSA University (Reference number EC 10 PG 10/2011) and Egyptian Community guidelines for animal care.

Author information

Authors and Affiliations

Corresponding author

Correspondence to Riham Omar Bakr.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Reprints and permissions

Back to blog